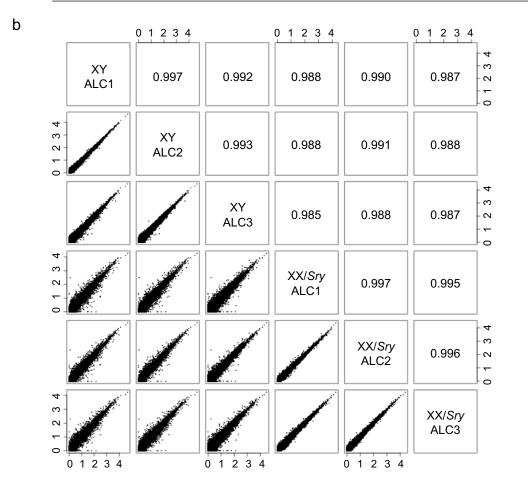

Supplemental Figures

Gene expression and functional abnormalities in XX/Sry Leydig cells


Shogo Yanai, Takashi Baba, Kai Inui, Kanako Miyabayashi, Soyun Han, Miki Inoue, Fumiya Takahashi, Yoshiakira Kanai, Yasuyuki Ohkawa, Man Ho Choi, Ken-ichirou Morohashi

Supplemental Fig. 1, Structural differences between XY and XX/Sry testes. a, Whole view of XY and XX/Sry testes of eight-week-old mice are shown. Scale bar = 2 mm. b and c, XY and XX/Sry testes of eight-week-old mice were stained with Oil red O and hematoxylin. Scale bars = 50 μ m.

Supplemental Fig. 1, Yanai et al.,

а		Total reads	Uniquely mapped reads	Reads mapped to multiple loci
	XY ALC1	12232191	11022073 (90.1%)	924025 (7.6%)
	XY ALC2	22898338	20799117 (90.8%)	1653423 (7.2%)
	XY ALC3	19385200	17570984 (90.6%)	1340047 (6.9%)
	XX/Sry ALC1	13613624	12188410 (89.5%)	973661 (7.2%)
	XX/Sry ALC2	14040206	12725129 (90.6%)	1052764 (7.5%)
	XX/Sry ALC3	21150652	19238771 (91.0%)	1478237 (7.0%)

Supplemental Fig. 2, Qualities of transcriptome data. a, Transcriptomes were obtained from three biologically independent ALCs each for XY and XX/Sry testes. Total reads, uniquely mapped reads, and reads mapped to multiple loci are summarized for each transcriptome study. b, Gene expression was compared pairwise between samples. Scatter plots (log_{10} scale) are shown upper the diagonal and correlation coefficients below the diagonal.

	а	Serto	li cells			b	ALCs CPM XY XX/Sry		
	Gene	C XY	PM XX/Sry	Fold change		Gene			Fold change
	Pdgfa	0.8	5.2	3.44	PDGF	Pdgfra	247.9	431.0	1.74
PDGF	Pdgfb	1.2	0.5	0.71		Pdgfrb	0.6	2.4	2.12
FDGi	Pdgfc	55.9	106.3	1.88		Ptch1	75.2	67.8	0.90
	Pdgfd	0.2	0.8	1.46		Ptch2	0.1	1.1	1.87
	Dhh	234.4	277.8	1.18		Smo	96.0	100.4	1.04
Hedgehog	lhh	0.1	0.3	1.14	TGFβ	Tgfbr1	43.1	39.3	0.91
	Shh	0.0	0.0	1.00		Tgfbr2	2.3	3.9	1.50
	Tgfb1	58.9	47.9	0.82	FGF	Tgfbr3	406.8	548.7	1.35
TGFβ	Tgfb2	0.5	2.8	2.55		Fgfr1	55.1	76.7	1.38
	Tgfb3	127.8	121.8	0.95		Fgfr2	180.4	173.8	0.96
FGF	Fgf2	0.0	0.0	1.00		Fgfr3	0.1	0.2	1.12
	Inha	1321.4	1672.8	1.27		Fgfr4	75.1	53.0	0.71
Activin	Inhba	0.1	0.7	1.52	ĺ	Acvr1	150.9	156.2	1.03
	Inhbb	461.2	337.1	0.73	Activin	Acvr1b	6.0	7.4	1.19
IGF1	lgf1	1.1	5.9	3.27		Acvr1c	10.0	18.1	1.73
						Acvr2a	28.8	32.4	1.12
						Acvr2b	0.8	1.2	1.23
					IGF1	lgf1r	275.8	301.9	1.09

Supplemental Fig. 3, Expression of genes related to paracrine factors. *a*, Expression of paracrine factors involved in the differentiation of ALCs was extracted from the transcriptome datasets for the XY and XX/Sry Sertoli cells. Increased and decreased gene expression in the XX/Sry Sertoli cells is indicated in red and blue, respectively, with deeper shading for larger differences. *b*, Expression of receptors for the paracrine factors was extracted from the transcriptome datasets for the XY and XX/Sry ALCs. CPMs are means of biological triplicates. Increased and decreased gene expression in the XX/Sry ALCs is indicated in red and blue, respectively, with deeper shading for larger differences.

Supplemental Fig. 3, Yanai et al.,

l	Gene	CPM XY XX/Sry		Fold Regulation		Target	Reference	
	Cebpa	80	95	1.19	Activation	Star	1	
	Cebpb	122	55	0.45	Activation	Star CYP11A1 HSD3B2	1,2	
	Creb1	28	35	1.26	Activation	Star CYP11A1	1,3	
	Fos	2959	1877	0.63	Activation	Star CYP11A1	1,4	
	Gata4	200	203	1.02	Activation	HSD3B1 Cyp17a1	5,6	
	Hif1a	54	61	1.12	Activation	Hsd3b1	7	
	Jun	1590	1389	0.87	Activation	Star	1	
	Nfkb1	55	54	0.99	Suppression	Cyp17a1	8	
	Nfkb2	27	25	0.92	Suppression	Cyp17a1	8	
	Nr3b3/Esrr3	24	23	0.96	Activation	Cyp17a1	9	
	Nr3c1/gr	44	67	1.52	Suppression	Star	10	
1	Nr4a1/Nur77	133	123	0.92	Activation	HSD3B2 Star Cyp17a1	10,11,12	
	Sp1	69	90	1.31	Activation	Star CYP11A1 Cyp17a1	1,6,13	
	Srebf1	135	180	1.33	Activation	Star	1	
	Yy1	67	71	1.05	Activation	HSD3B2	14	

Supplemental Fig. 4, Expression of genes encoding transcription factors. *a*, Expression of transcription factors involved in the regulation of steroidogenesis was extracted from the transcriptome datasets for the XY and XX/Sry ALCs. CPMs are means of biological triplicates. Increased and decreased gene expression in the XX/Sry ALCs is indicated in red and blue, respectively, with deeper shading for larger differences.

Supplemental Fig. 4, Yanai et al.,

References

- Manna, P. R., Wang, X.-J. & Stocco, D. M. Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68, 1125–1134 (2003).
- 2. Mizutani, T. *et al.* C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1). *Biochem. J.* **460**, 459–471 (2014).
- Morohashi, K. et al. Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol. Endocrinol. 7, 1196–1204 (1993).
- 4. Guo, I. C., Huang, C. Y., Wang C. K. & Chung, B. C. Activating Protein-1 Cooperates with Steroidogenic Factor-1 to Regulate 3',5'-Cyclic Adenosine 5'-Monophosphate-Dependent Human CYP11A1 Transcription in Vitro and in Vivo. *Endocrinology* **148**, 1804–1812 (2007).
- 5. Bergeron, F., Nadeau, G. & Viger, R. S. GATA4 knockdown in MA-10 Leydig cells identifies multiple target genes in the steroidogenic pathway. *Reproduction* **149**, 245–257 (2015).
- 6. Flück, C. E. & Miller, W. L. GATA-4 and GATA-6 modulate tissue-specific transcription of the human gene for P450c17 by direct interaction with Sp1. *Mol. Endocrinol.* **18**, 1144–1157 (2004).
- 7. Lysiak, J. J. *et al.* Hypoxia-inducible factor-1alpha is constitutively expressed in murine Leydig cells and regulates 3beta-hydroxysteroid dehydrogenase type 1 promoter activity. *J. Androl.* **30**, 146–156 (2009).
- 8. Hong, C. Y. *et al.* Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. *Mol. Cell. Biol.* **24**, 2593–2604 (2004).
- 9. Park, E. *et al.* Estrogen receptor-related receptor γ regulates testicular steroidogenesis through direct and indirect regulation of steroidogenic gene expression. *Mol. Cell. Endocrinol.* **452**, 15–24 (2017).
- Martin, L. J. & Tremblay, J. J. Glucocorticoids antagonize cAMP-induced Star transcription in Leydig cells through the orphan nuclear receptor NR4A1. J. Mol. Endocrinol. 41, 165–175 (2008).
- 11. Havelock, J. C. *et al.* The NGFI-B family of transcription factors regulates expression of 3beta-hydroxysteroid dehydrogenase type 2 in the human ovary. *Mol. Hum. Reprod.* **11**, 79–85 (2005).
- 12. Martin, L. J. & Tremblay, J. J. Nuclear receptors in Leydig cell gene expression and function. *Biol. Reprod.* **83**, 3–14 (2010).
- 13. Guo, I. C., Hu, M. C. & Chung, B. C. Transcriptional Regulation of CYP11A1. J. Biomed. Sci. 10, 593–598 (2003).
- 14. Foti, D. M. & Reichardt, J. K. YY1 binding within the human HSD3B2 gene intron 1 is required for maximal basal promoter activity: identification of YY1 as the 3beta1-A factor. *J. Mol. Endocrinol.* **33**, 99–119 (2004).